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The purpose of this paper is to point out that the numerical multi-domain method for free
vibrations of membranes introduced by Kang and Lee [1] may be more accurate than they
take credit for.

Consider their Case Study 4.3 of an L-shaped membrane (their Figure 10), constructed
from three squares each of side length one unit. The normalized frequencies K of a single
such sub-square (wave speed one unit) are given exactly by

K"nJm2#n2, m, n"1, 2, 3,2. (1)

But these constitute an analytical sub-class of the frequencies of the L-shape, and so may be
used as standards for the accuracy of any numerical method for the L-shape for certain
modes.

The inspection of modal patterns using any proprietary "nite element package quickly
reveals that the fundamental mode m"n"1 for the sub-square is unambiguously

identi"able with the third sequential mode for the L-shape. The exact value nJ2+4)4429
shows that the value 4)44 obtained for K

3
by Kang and Lee in reference [1] using their

multi-domain method is actually better than the comparison value 4)45 obtained by "nite
element methods quoted in reference [1].

Similarly, the eighth mode of the L-shape is identi"able as the second mode of the

sub-square, with m"1, n"2, giving the value nJ5+7)0248 to which again the
multi-domain value 7)03 for K

8
obtained in reference [1] is closer than the FEM value 7)05

as quoted.
In fact, the second and third modes of the sub-square, m"1, n"2 and m"2, n"1 in

equation (1), are obviously degenerate. Correspondingly, the eighth and ninth modes of the
L-shape are seen to be degenerate. It is a pity that the authors in reference [1] did not
attempt just one further mode, which would presumably have detected this degeneracy. The
detection of degeneracies and the degree of agreement between the computed
corresponding eigenvalues may provide a further stringent test on the accuracy and e$cacy
of a numerical method.

Inspection of modal patterns for the L-shape shows that the 14th mode corresponds to

the fourth mode for the sub-square, with m"n"2 and eigenvalue nJ8+8)8858. If the
application in reference [1] could be extended up to K

14
, this value would be a test of how

the multi-domain method handles higher modes.
Although it has only been shown above that the multi-domain method results in

reference [1] for the L-shape are in good agreement with exact results for an analytical
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sub-set of the modes (here speci"cally the third and the eighth), it seems likely that the
numerical accuracy would persist for other multi-domain-method values listed in reference [1].
This is because the method of reference [1] involves only the Bessel function J

0
so, from

a numerical point of view in reference [1], there would be nothing special about the
analytical modes whose eigenfunctions happen to involve trigonometric functions which
make them amenable to an exact treatment.

These comments show the importance of having exact analytical modes to act as
benchmarks for the accuracy of any proposed numerical method. Whilst such comparison
modes may not be available for general shapes, their existence for some simple shapes may
provide a class of test shapes. For example, if the L-shape had not consisted of three
identical squares but had sides in low order rational ratios, some analytical modes could
still be found, although they would have higher sequential mode numbers within the
eigenvalue spectrum. It was fortunate that the simple L-shape considered in reference [1]
had an exact mode as low as the third.

In conclusion, it may be noted that these ideas are also applicable to the numerical
methods used for calculating the eigenfrequencies of simply supported plates of polygonal
shapes, via the membrane}plate analogy which relates the frequencies of the plate to the
squares of the frequencies of a membrane of the same shape. (See e.g. the Appendix of
reference [2] and references therein.)

For instance, Solecki [3] investigated the vibrations of a simply supported L-shaped
plate, regarded as a square plate with a square cutout, using a Boundary Integral Equation
method. The third mode (for cut-out ratio 0)50 in reference [3]) should again correspond to
m"n"1 in equation (1) above, but now K is squared. With appropriate normalizations,
this gives (12#12)/(1/2)2"8 for the standard L-shape described above. Indeed, Mode 3 for
this case was computed in reference [3] to have the very close value 8)001. Interestingly, the
"nite element program used as a comparison in reference [3] for the results produced
a value 8)105, again less accurate than Solecki's value according to the criterion stated
above.
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